Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Polymers (Basel) ; 13(23)2021 Nov 25.
Article in English | MEDLINE | ID: covidwho-1542710

ABSTRACT

In the context of the SARS-CoV2 pandemic and because of the surgical and FFP2 mask (equivalent to the American N95 masks) shortages, studies on efficient sterilization protocols were initiated. As sterilization using irradiation is commonly used in the medical field, this method was among those that were evaluated. In this work, we tested irradiation under vacuum and under air (under both γ-rays and e-beams), but also, for acceptance purposes, undertook washing prior to the e-beam irradiation sterilization process. This article deals with the modifications induced by the sterilization processes at the molecular and the macromolecular scales on an FFP2 mask. Fourier transform infrared spectroscopy in attenuated total reflectance mode, size-exclusion chromatography and thermal-desorption-gas chromatography-mass spectrometry were used to characterize possible damage to the materials. It appeared that the modifications induced by the different sterilization processes under vacuum were relatively tenuous and became more significant when irradiation was performed using γ-rays under air.

2.
Front Med (Lausanne) ; 7: 584036, 2020.
Article in English | MEDLINE | ID: covidwho-914431

ABSTRACT

Background: The coronavirus infectious disease-2019 (COVID-19) pandemic has led to an unprecedented shortage of healthcare resources, primarily personal protective equipment like surgical masks, and N95/filtering face piece type 2 (FFP2) respirators. Objective: Reuse of surgical masks and N95/FFP2 respirators may circumvent the supply chain constraints and thus overcome mass shortage. Methods, design, setting, and measurement: Herein, we tested the effects of dry- and moist-air controlled heating treatment on structure and chemical integrity, decontamination yield, and filtration performance of surgical masks and FFP2 respirators. Results: We found that treatment in a climate chamber at 70°C during 1 h with 75% humidity rate was adequate for enabling substantial decontamination of both respiratory viruses, oropharyngeal bacteria, and model animal coronaviuses, while maintaining a satisfying filtering capacity. Limitations: Further studies are now required to confirm the feasibility of the whole process during routine practice. Conclusion: Our findings provide compelling evidence for the recycling of pre-used surgical masks and N95/FFP2 respirators in case of imminent mass shortfall.

SELECTION OF CITATIONS
SEARCH DETAIL